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THE STANDARD ERRORS OF VARIOUS TEST STATISTICS 

WHEN THE TEST ITEMS ARE SAMPLED 

Frederic M. Lord 

Abstract 

Suppose that a large number of forms of the same test are administered 
to the same group of examinees, each form consisting of a random sample of 
Items drawn from a common pool of Items. If some test statistic is com- 
puted separately for each form of the test, the value obtained will (ig- 
noring practice effect, fatigue, etc.) differ from form to form because of 
sampling fluctuations. The standard deviation of the values obtained 
represents, approximately, the standard error of the test statistic when 
the test items are sampled. 

Formulas for such standard errors are here derived for a) the test 
score of a single examinee, b) the mean test score of a group of exami- 
nees, c) the standard deviation of the scores of the group, d) the 
Kuder-Richardson reliability of the test, formula 20, e) the Kuder- 
Richardson reliability, formula 21, f) the test validity. In large 
samples, the foregoing statistics (with the possible exception of d) are 
approximately normally distributed, so that significance tests can be made 
by familiar procedures. 

Consideration is given to the relation of certain of the foregoing 
standard errors to the conventional standard error of measurement, to 
the Kuder-Richardson reliability coefficients 20 and 21, and to the Wilks-. 
Votaw criterion for parallel tests. Practical applications of the results 
are briefly discussed. In particular, it is concluded that the Kuder- 
Richardson formula«21 reliability coefficient should properly be used in 
certain practical situations instead of the commonly preferred formula-20 
coefficient. 



THE STANDARD ERRORS OF VARIOUS TEST STATISTICS 

WHEN THE TEST ITEMS "ARE SAMPLED*. 7' 

Frederle Jl^ iord 

._. ?_Suppose "thartr-She same tWt is adminle^ered to' a large number of 

separate groups of examinees, the groups being random samples all drawn 

from the same population; and suppose that some teat statistic is com- 

puted separately for each sample of examinees, The value obtained for 

this test statistic will, of course, differ from sample to sample be- 

cause of sampling fluctuations. The standard deviation of these values 

over a very large number of samples is the standard error of the test 

statistic when examinees are sampled. For convenience, this type of 

sampling will be referred to as type 1 sampling. 

On the other hand, suppose that a large number of forms of the 

same test are administered to the same group of examinees, each form 

consisting of a random sample of items drawn from a common population 

of items; and suppose that seme test statistic is computed separately 

for each form of the test. Let us assume for theoretical purposes 

that the examinees do not change in any way during the course of test- 

ing;, i.e., that there is no practice effect, no fatigue, etc. The value 

computed for the teBt statistic will still, of course, differ from form 

to form because of sampling fluctuations. The standard deviation of 

these values u<rer a very large number of samples is the standard error 

of the test statistic when the test items are sampled. This type of 

sampling will be referred to as a type S sampling. Test forms con- 

structed by type 2 sampling will be called randomly parallel forms or 

randomly parallel tests. 

The writer is indebted to Professor S.S. Wilks who has checked 
over certain critical portions of a draft of this paper. 



Type. 1 standard error f oxisulas have long been av&il«ä)l8 and, ar«* 

sometimes incorrectly used in situations where sampling of test items 

is of crucial, issporiaace. The present paper is concerned with deriv- 

ing formulas for the type 2 steMärd 'etfQTBTot766Xi^M\^m%:ß^&§i^lQB.* 

Formulas for the two kinds of standard errors may usually he readily 

distinguished on a superficial level hy the following characteristics» 

which underscore the essential difference "between thea: type 1 stand« 

sard errors are usually obviously proportional to some power (positive 

or negative) of the number of examinees in the sample — most commonly 

inversely proportional^ to the square root of this number — and are 

usually much less obviously and simply related, if at all, to the 

number of items in the test; type 2 standard errors have the corre- 

sponding characteristic with respect to n ,  the number of item« in 

the sample. 

Notation and Summary of Formulas 

The test statistics with which the present study is concerned 

are^prlmarily the following t 

t  — the observed test score of examinee a , obtained by a , 

counting the number of items answered correctly on & 

single test. __* 

£  — the mean of the scores obtained by the N examinees on 

a single test.    t = St /N . 
a a 

s,  — the standard deviation of the scores obtained by the S 

2    2 /   F2 
examinees on a single test.    s, •» £t /N - t 

t  a a 



r21 "" *ne Kuder-Hlchs-xdson reliability coefficient* formula 231« 

21  n-1 Lx   ^n   '/ua 

r or r^j — the Kuder-Richardson reliability coefficient, 

formula 20.    r - -~=j» (l - £s "/s.) (symbols explained 

in the succeeding list). 

r . — the correlation of the test score with any external ex 

variable, c .    rct - sct/scst • 

Considerable care in defining notation must he taken here in order 

to avoid serious confusion. Additional symbols that will be used are 

listed below for easy reference. 

x. — the "score" of examinee a on item i .    x. — 1 if ia la 

the item is answered correctly.    x.    m 0 otherwise. 

n  — the number of Items in a single form of a test, i.e., in 

a single sample. The subscript i runs from 1 to n . 

H  — the number of examinees in a single group of examinees. 

The subscript a runs from 1 to N . 

m  — the number of items in a finite population of items. 

p. — the observed "difficulty" of item i for the H exami- 

nees tested.   p. « ^loA • 

%-1-P-i • 



i  — the "proportion-correct score" of examinee a j the propor- 

tion of the Items in a single test answered correctly by 

examinee a »    z «• t /n . 
a   a 

E , c , etc« — the mean of the N values of % P    c t    etc. 

z •• Ez /N , etc. 
a a 

M(p) — the mean of the n observed values of p. for the n 

items in the test administered.    M(p) • £p, /n . 
i x 

s.s, etc. — the standard deviation of the N values of c ' z 

c , z , etc.    s„ = EZ^/N - i  , etc. 
* z  a a 

s. — the standard deviation of x.  for fixed i i la 

e . , etc. — the covariance (over examinees) of c and t , 

etc.    sct - scstrct - S(ca - c)(ta - t)^ . 

s. , s. , s.. — the covariance (over examinees) of c , 

z , or t , respectively, with x. f  for fixed 1 . a      a xa 

ait- wit - 5(xia - >i>c*. - *)A ; 

s(p) — the standard deviation of the n observed values of p. 

for the n items in the test administered. 

2/ !(p) - Zp^/n - ^(p)  . 



(slz) *    8(8it^ * e-fcc* •"" the standard deviation of the a 

observed values of e.  , s.. , etc» for the n items in Is *  it * 

the test administered.    s (s±t) * Esft/a - (Es^/a) 

s(s.c,s.,) -- the covariance (over items) of s.  and s.. 

8(sic>8it) * ficsit/n - ^fic/n)(fit/n> • 

**.,_ , *.<+ > r.i  — the correlation of c , t t  or z„ , 
•i.e.      XX      x.£ Et      6,       'el 

respectively with x  , for fixed i .    r,. «• •Vt'*l8t 

It should be noted that all the statistics in the foregoing list 

are observed sample statistics relating to a given sample. There are 

two kinds of statistics listed, typified, in the simplest case, by 

I • Zz /N and M(p) ** £p./n . Population parameters have not been 
a a i 1 

listed but -will be designated, vhen needed, by the use of Greek letters, 

The following additional symbols, relating to the totality of all pos- 

sible samples of test items (type 2 sampling), vill be used. 

E(x) — the expected value of x j the arithmetic mean of the 

statistic x over all possible samples. 

S.E.(x) — the standard error of the statistic x j the standard 

deviation of the statistic x 

S.E.2(x) =E(x2) -CE(x)32 . 

deviation of the statistic x over all possible samples. 
2r~\  « w„2\ _ rw„\~!2 

2/ v 
Var x — the sampling variance. Var x ~ S.E. (x) . 

Cov(x,y) — the sampling covariance of the statistics x and y 

ever all possible samples. Cov(x,y) = E(xy) - E(x)E(y) • 



Table I maaaarlzes the more important of toe type 2 standard errors 

derived la the present paper. For purposes of comparison, the last 

column of the table, when appropriate^ gives the corresponding usual 

type 1 formulas for the standard error for the case -where the test 

scores are assumed to he normally distributed. The standard error 

forasulas in both columns are large-sample formulas, in general, and 

observable sample statistics have been substituted far the corresponding 

population values throughout. 

At a later point it will be proven that in large samples of the 

second type all of the tea* statistics in the left-hand column of Table 

1, with the possible exception of the Kuder-Richardson formula 20 reli- 

ability coefficient, hare an aeysg? cot leal 1y normal sampling distribution. 
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Illustrative Examples and Discussion of the Standard Errors 

Suppose that Form A of a certain 135-item test has.been administered. 

Several parallel forms of this same teat are to be administered in the 

future. Each form ia administered to a different group of examinees. 

The groups of examinees may be considered as random samples drawn from 

the Bame population. Each group ie so large that differences between 

groups due to sampling of examinees may be ignored.* It is found that 

th«? mean, standard deviation, and Kuder*Richardson formula 20 reliability 

of the scores on Form A are 65.5, 21.5, and O.95, respectively. How much 

may we -expect "Ehe mean» to vary from form to form? 

The'required.-.value of s(p) can be determined directly from item 

analysis dataj or it can be calculated from the three numerical values 

given by solving for s (p) Tucker's modification (8) of the equation 

for the Kuder^Rienardson formula 20 reliability, the result being: 

', '.-•='". n 

We find that s2(p) = .0538 . 

The large-sample estimate of the type 2 standard error of the mean 

is. found to be S.E.2(t) = 2.7 .  (The subscript "2" is used here, and 

the subscript "l" is used below, to indicate type 2 and type 1 standard 

errors, respectively. Hereafter, type 2 sampling will be understood, 

unless otherwise specifically indicated.) If the same test were admin- 

•* 
Useful formulas for dealing simultaneously with sampling of items 

and sampling of examinees have been developed by the writer for certain 
of the statistics studied here. Some such formulas are recently inde- 
pendently reported in Hooke, R., "Sampling from a matrix, with applica- 
tions to the theory of testing." Princeton University Statistical Re- 
search Group, Memorandum Report 53, 1953*  (Dittoed.) 
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istered to random groups of 135 examinees, the type 1 standard error 

would 'be B.E,.,(€) « 1,8 . 

On the hasis of the foregoing, we may expect that parallel forms of 

the test would not differ from each other in mean score by as much aB 

2/äS„E.2{t) =7-6 points more than one time in twenty. If the parallel 

forms are carefully constructed by matching items from form to form on 

difficulty and item-test correlation rather than by random sampling of 

items, it may well be that the forms will not differ from each other 

as much as the foregoing formulas would indicate. On the other hand, 

it is not unlikely that supposedly parallel forms of a test may, because 

of the unconscious bias of the test constructor, often be found in fact 

to be less parallel than would he expected if each form were a random 

Sample of test"items. 

In many kinds of statistical experiments it is commonly not merely 

desirable hut actually necessary to select cases by randcsn sampling 

rather than by stratified sampling, even though randan sampling gives 

rise to larger sampling fluctuations. The reason is, first, that random 

sampling tends to avoid unintentional hiasj and, second, that the stand- 

ard errors arising from random sampling are known and easily used, 

whereas those arising from stratified sampling are often either unknown 

or excessively cumbersome to use. Similarly, and for the same reasons, 

it will he desirable in certain kinds of experimental work, to use par- 

allel forms composed of items selected at random rather than in any 

other way. 



Suppose, for example, it is desired to ir.vestigate the relation of 

length of reading passage to validity in a reading comprehension test. 

The experimenter might well select at random from a pool of all avail- 

able reading items of some specified difficulty level (a) a sample of 

all items based on passages containing more than 200 words and (b) a 

sample based on passages containing less than 100 vords (it is assumed 

here that there 1B only one item per reading passage). He then places 

these items in random order and administers them to a group of examinees, 

obtaining separate scores for the long and for the short items. He com- 

putes the validity of each score, using some anefllable criterion. If 

the two validity coefficients differ by little more than the type 2 

Btandard error of their difference, it seems likely that the difference 

is attributable to chance fluctuations due to the sampling of items. 

If they differ by several times this standard error, the opposite con- 

clusion may be reachedj Insofar as other uncontrolled experimental var- 

iables are ruled out, the difference may plausibly be attributed to length 

of reading passage. 

A note of cautior. is necessary in using the type 2 standard error 

formulas. These formulas involve no assumptions "beyond random sampling 

and large n ;  however, it is not at present known just how large an n 

is needed in any given case. The formulas in Table 1, therefore, should 

be used with some caution. Thiö Is particularly true of the last three 

rows of the table, since the correlation coefficients given in the first 

column UEadoubtedly have sharply skewed distributions when n is small. 

It Bhould, finally, be noted that the assumption of random sampling 

of items cannot be expected to hold for speeded tests, and the formulas 

given in the present paper must be considered inapplicable. 
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Standard Errors of Measurement and TeBt Reliability 

Table 1 gives a practical approximation to S.E»(t ) in terms of s, 

observed sample statisticsj the rigorously accurate value, as Bhown in 

a later section is 

sjs.a(ta):-ira(n-ra)-. (2) 

Here T "• E(t„) iö the true score of examinee a , i.e., the expected 

value* of t  over all randomly parallel forms of the test. The stand- 

ard error of the score of an examinee is the standard deviation of the 

errors of measurement of his score (error of measurement = t - T ). a   a 

The average of such standard deviations of errors of measurement over 

all examinees, 

r-*-X>-jg«v-*/ • «« 

*The expectation symbol, E , denotes the average {afctMan&tic mean) 

value over all type 2 samples. Thus the operator E can be treated by 

the same rules as a summation sign, so that E(x + y) = E(x) + E(y) , 

EZ(t ) = ZE(t ) , E(nt) = nE(t) , E(T ) - T , etc. By def lition 
a       Q, Q Et 8* EL 

ra - E<ta) , s.E.2[f(tO - CfCt) - *{m)}f = E{f(t)}2 - &{t{t)}-f , 

and COT f1(t),f2(t)1 - EJf1(t)f2(t)"l - EIf^tjjUg(t)1 , where f (£) 

is any function of t . 
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may appropriately fee compared with the conventional ^standard error of 

measureaaant* of test theory» This latter, which will fee denoted ay 

"8*I!.>§eaa.j" is likewise an average over all examinees. It is conven« 

tionally defined fey the formula 

S.E.Meas. m s^/l - reliability . {k) 

Specifically, it will now he shown that the squared standard error 

of measurement given hy equation 5 is exactly equal to that which would 

he expected in equation k if the test reliability there were given fey 

the Kuder-Richardson formula 21 In reference (5). In our notatioay 

this formula is 

sf - £(1 - I/o.) 
r21  n-1      2 W 

8t 

Averaging equation 2 over all examinees, we find 

s   2(ta) * nla &<*-^)-äET«(n-ra) 

l§ a  nKa a 

From (5) and {k)f  the expected value of the squared S.E.Meas» is 



la 

In order to deal with (7) we first need, expressions far l(a. ) 

mtä.   S(€)' 

:«?>-• 1?*. " l>2] " #{(*« • V • (\ " « - « * «ft • <8> 

After squaring ami rearranging I and £ signs, 

2E(Ta - T)s{(ta - Ta)} - 2E{(1 - T)|(ta - Ya)}   - 2E{(? - f)f(Ta - f)}] 

(9) 

How the fourth and the last terns on the right Yanish since E(t » f ) 

and 2(f » r) soth-equal sero. It is seen that we nave* terra, fox term» 
a a 

E(s^) * jjp Var ta + o* + Var £ + 0 - 2 Var I  - 0 (10) 

Row   Var t      is given liy (2), so that 
EL 

E<8t> ~ nlgra(n " ra) + 4 . Var £ (11) 

Finally* proceeding as in (6), we hare 

»(•*) = r . | ? + £~^ 4 . Var € (12) 



Hext* 

EC^2) - EßS - *r) + ff 

«i(€ ~ r)2 + 2?E(£ » r) + E02) 

Var £ •*• T2  . (13) 

From (T), (12), and (13), 

Thus result Is the sarae as that In (6). We hate shown that the arerage 

squared standard error of igeasurement found. In type 2 sampling is exactly 

equal to the expected rslue of the squared S.E.Weas. derived frcsa the 

formi.Ta 21 Kuder-^Richardson reliability coefficient. 

The logical relation between Kuder-Richardson fonnulas SO and 21 

can be derived from equations 1 and 5, frcsa which it is readily found 

that 

»& ' r2Q> ~ Af±  * r21> - Ä1! " (15) 

How the term on the left and the first term on. the right of (15) are 

the squared standard errors of measurement computed frcsa x^   and 

from rp, , respectively* Furthermore, since ns /(n - l) is the 



Ill- 

•beat unbiassed sm&ll«gsaaple estimte of the population variance a    t 

it is seen that the last term on the right is the ssjalX-aiassple estimator 

for the squared standard error of the mean score (see equation 22). 

Consequently, we may rewrite (15) as 

(S.I.Meas.20)
2 * (S-E-Meas.^)2 - S.E.2(T,) . (i6) 

The difference between r^ and r^ , as made apparent in 

equation l6, arises from the fact that some randomly parallel forms 

are, by chance, composed of harder-than-ÄTerage items, or of easier» 

than-»average itemsj consequently, the mean of the actual scores on 

any given test is not exactly equal to the mean of the true scores 

for the same examinees» The use of r^ is appropriate whenever one 

is willing to ignore any difference between the mean test score of the 

group and "^eir ff68?* "*?"*? scop"5» i«8»,» ggggi v^  jg concerned only yltft 

the relative rather than the absolute size of the scores of the group« 

Oa the other hand, r^, should be used -whenever one is concerned -with 

the actual magnitude of the errors of msaBurement, -e»g., whenever there 

is a predetermined cutting score which divides the examinees into 

passing and failing groups« 
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Comparison with Certain Standard Formulas 

A formula closely related to equation k  is the following (adapted 

from equation 66  of reference (7)): 

st , 
S=E.(t) ."»-TH/1 •- reliability  . (66) vl 

The question ariBea as to why S.E.(^) In equation 66 has a 

totally different formula from that giren in Table 1 for the type 2 

standard error of the mean. If we use equation 66 to determine whether 

or not two forms of a test yield significantly different mean scores, 

we will always find the difference to be significant provided only 

that va take a sufficiently large number of examinees ( N ) for our 

experiment. This is true because the standard error of equation 66 is 

Inversely proportional to y^N — the standard error vanishes when N 

1B large. In spite of this fact, it should be noted that (66) 1B not 

a type 1 standard error. A type 1 standard error involves the sampling 

of Individuals, whereas only a single group of examinees is contemplated 

in (66). 

The standard error given in equation 66 represents only the sampling 

fluctuation due to those errors of measurement that "average out" when 

taken over many individuals. Such errors of measurement arise from 

virtually instantaneous "chanee" fluctuations in the individual. One 

example of such an error of measurement is the following: An examinee, 

not knowing the answer to a true-false item tosses a coin, in effect, to 

select the correct answer. If the same test could be administered again 



16 

without practice effect, the same eytanlrVBCc.voiüA h&m  a .fifty-fifty 

chance of giving & different answer. This differeile gives rise to an 

error of measurement of the type under discussion. 

The standard error of the mean giv«a in Table 1 includes not osüy 

sampling errors of the sort Just mentioned, hut also ssaiipling errors 

arising from the sampling of the test items. 

The line of reasoning applied to equation 66 is equally applicahle 

to WlUcs' (10) and to Voters (9) significance tests when either of 

these is used as a criterion of "parallelism" in tests, as suggested 

hy Gulliksen (5> Ch. Ik),    Gulliksen defines "parallel1' tests as having 

equal means, equal -variances, and equal intercorrelations with each 

other sad vith all external criteria (as well as satisfying appropriate 

aon-statietical criteria of parallelism). Wilks1 and Votaw'a signifi- 

cance tests provide rigorous statistical criteria for "parallelism" 

under this definition. It would not he very desirable, however, to 

apply Willa^, or Votaw,s procedures to data such as were obtained in the 

second illustrative example given in a preceding section. If a test 

composed of items having a certain characteristic is to he compared with 

a test composed of different items having a second characteristic, it 

may not he very useful to set up the null hypothesis that the two tests 

are strictly interchangeable in every vay. Such a null hypothesis will 

always be rejected if I is sufficiently large, but the rejection of 

this hypothesis does not necessarily imply tnat the first and second 

characteristics have different effect, since the observed discrepancy 

might be readily accounted for as no greater than -would he expected to 

be found in comparing two randomly parallel tests composed of the same 

kind of items. 
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Sampling Distributions of Test Statiebics 

It remains only to present the derivations of the results that have 

up .;o now teen quoted without proof. The derivations are bbsedcTon the 

assertion that there is a definite response ( x.  } that a given examinee 
la 

will make to a given item. The nature of this response may or may not be 

known in advance. The group of N examinees to whom the items or tests 

are administered is a fixed group not Bubject to sampling fluctuation or 

other- changes. 

The responses of the N examinees to item i may be specified by 

the column vector -[x,  = x ,x _, .. .,x "j- . Since each item response 

is assumed to be treated as either "right" or "wrong", x. =0 or 1 , 

N and there are exactly 2  possible different vectors, i.e., different 

patternc of item response. If we let the subscript I — 1,2,3,. ..,s  , 

N then these possible patterns are represented by the 2  vectors x_ 

If two items have exactly the same pattern of responses, i.e., if the 

response of each examinee is the same on both items, then the two items 

are wholly indistinguishable in the present bituation. It may therefore 

be asserted without loss of generality that, for present purposes, any 

infinite pool of items is composed of £T different kinds of items, 

designated by the 2T     vectors xT . The relative frequencies of 
X 

occurrence" of the different klnde of items are therefore the only 

parameters needed to describe completely any infinite poolj these 

parameters will be denoted by T_ , the relative frequencies of occur- 

rence of the patterns x . 
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When a random sample of n test it eins is drawn from the pool, 

the probability that the resulting n - item test will be composed of 

n  items of the first kind, np items of the second kind, ..., nT 

items'" of the I - the kind, ,tli    n J      items of._the '..$ _.-__th kind: 
(2N) 

is given by the standard multinomial distribution (6, p_£. 58-59): 

•f(^"-^)) ~^f~T'1Tlr^1       ' (1T) 

It can be shown (l, p. 419) that the quantities V_ = (n_ - nW-)/JnrL 

are asymptotically normally distributed for large n with zero means 

and with the (singular) variance-coyariance matrix I - TJ1T , where I 

is the identity matrix and «  iB the column vector {fä\> •JW^»'*<$ \JTF  M ) 
1  . (2W) 

Now, the test score of individual a is z = —Ex.  = —SxT n^. , the a      n,   X a      n— xa x 

xT      being given constants,  0 or 1,  not  subject to sampling fluctuation; 

or,  in terms  of    VT  ,     z    = Etx.    +    — Z JlfLX-r VT     .    The first term on Ia_IIa/-T
TIIaI I 4/n I 

the right is   S   ^T /n ,  the  "true" proportion-correct scorej  so that, 
3.     EL 

finally, \/ri(z - J' ) = T, v^x
x VT  • It is thus seen that the N var- a   a   _  X la j. 

iables >/n(z - $  )    are asymptotically jointly multinormally distributed, 

each with a mean of zero, a variance which turns out to be «T (l - $  } , 
cL        £L 

and covariances S .   - t %,   , where _f ,  is the proportion of all items 
ah   a D ab 

; answered correctly by both examinee  a and examinee b  . It follows 

immediately that the large-sample standard error of z  is ,/J" (1 - S  )/n 

(cf. (2)). The derivation of these and other standard errors will be 

left to the following section, however. 
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$y a well-known theorem, If f(z.,z„?...,z ) is a function of the 

z& having continuous first-order partial derivatives with respect to 

each 2  at the point (j-^C,, »• •>lw) J 
aaä if a* least roe of these 

derivatives is nonvanishing at this point, then the quantity ^ülfCs-, 

zg>...,z„) - f(£i,»$2>. ••»§«) I is asymptotically normally distributed 

with zero mean when n is sufficiently large. This theorem assures ua 

that the mean score ( £ or t ), the standard deviation of the scores 
wmmmtmm  —W—I   M  U    •   fww—M• nun '  •*      ••mi »n,   ..    i. .- i •    i    n   mi i     i    i   i i    ii  MJ   |   HI   r   ii-   ii mi mm r •.; n I     mm     ' 

( 8  or 8. ), the Kuder-Richardson formula 21 reliability ( r«,.) , 

and the test validity { r   or r . ), are approximately normally 

distributed in type 2 teampllag with large n j and in addition gives us 

the large-sample expected value of each statistic. It seems highly 

likely that the Kuder-Richardson reliability, formula 20, likewise is 

asymptotically normally distributed, but no proof of this conclusion 

is available at present, in view of the fact that the formula for this 

2 
statistic involves a  (p) , which is not a function of the z . 
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Derivations of Expected Values and Standard Errors 

The Individual 8eore 

The proportion of the items in the entire pool to which examinee 

a will give the correct answer is, by definition, 5  «• T /a . If 
Si & 

n items are drawn at random frcm the pool, t , the score of examinee 

a on the resulting test, i.e., the number of items that he will answer 

successfully, will of necessity have the usual binomial distribution* 

with mean and variance 

E(ta) - ra , (18) 

S.E.2(t ) -i Y (n - r ) = n? (1 - 9 ) . (19) 

This conclusion (and also those that follow, except as large n may be 

assumed) depends on no assumptions whatever except that of random sampling. 

Equation 19 is identical with equation 2, which was discussed in a pre- 

vious section. If the observed value t  is substituted for the unknown a 

T  in (19 )t we obtain the square of the first formula of "able 1. 
El 

For finite sampling, when n iteas are drawn without replacement 

from a finite pool of m items, the corresponding formulas, stated with- 

out proof, are 

E(ta) - Tfi , (18*) 

 •  I     II   L  '   »•••••—• HP  U III   I I  I >        |  I         •   I  II • I   I 

If we concern ourselves with only a single examinee,* the number of 

correct responses that he gives on one sessple of items is not correlated 

with the number that he gives OH. other aamples. 
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S.E,2(t ) =5~T(ri -r )  . (19s) * a   BSI a    a V  * 

The Mean Score of. the Group Tested 

It should he noted that the scores of examinees "a and b are 

not independent over different parallel forms Of the test. If a 

particular form happens to he composed of rather difficult items, hoth 

examinees will tend to get low scores j if a particular form happens to 

be easy, hoth will tend to score higher. Consequently, although the 

expected value of the mean score in the group i s equal to the mean of 

the expected values of the individual scores, i.e., 

E (^feTa = t > <20> 

the standard error of the mean is not an average of the standard errors 

of the individual scores. 

It will he convenient from this point on to work with z ** t /n , 
EL    EL 

the proportion-correct score, rather than with t  itself. The nature 

of the desired standard error follows immediately from the fact that 

the mean score ( z ) is identically equal to the average item difficulty 

z = M(p)  . (21) 

The usual formulas for the standard error of a-mean apply to M(p) , 

so that 

S.E.2(Z)=io
2(p) (22) 

where a(p) is the standard deviation of the item difficulties over 
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the whole pool of items.* If the observed value of s*(p) is substi-^ 

tuted for the unknown ff"(p) , and if t/n is substituted for z ,, the 

square of the second formula of Table 1 is obtained. 

In sampling from a finite pool of m items, the corresponding 

formula, stated without proof, is 

S.E.2(i) -2~£aS(p)  . (22') 

We may note that cr(p) for a given set of items, and hence 

S.E.2(«) for a given test, will be higher when N is small than when 

N is large. Suppose, for exaiyple, that all items have the same dif- 

ficulty ( p ) for a very large group of examinees, so that for this 

group a(p) * 0 . If the seme items are administered to a smaller 

group of examinees drawn at random from the larger, the observed values 

of p. in the smaller group will differ from each other because of 

type 1 sampling fluctuations, and a(p) will be greater than zero. 

In the extreme case where N = 1 , the observed values of p are of 

necessity either 0 or 1, and a(p) is at a maximum. 

* 
Equation 19 ia a special case of equation 22, being obtained when 

Pi = Xia 
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fite Standard Deviation of the Scores of tue Group Tested 

2 
la order to ohtain the standard error of t , we first use the 

formula jfor the variance of a sum to write 

•S-^fftt (23) 

B.. "being the covarianee between item i and item h . Then, again 

from the fornaila for the variance of a su% 

Var s*~ 7 SS c^8ih^jk> ' n^ hijk 
(A) 

where "Cov" stands for the Basiling covariancei    Cov(8ii1'
B4k^ * Esihs1k 

" EßihEsjk    * 

Grouping the sums in (2k), we obtain 

Var BZ - TJ 
n -6n +lln -6n n -5n +2n 
Z      Z     E      E    Cov(s. .,s,. ) + 2 E     2     E   Cov(s,,s . ) 
(h, i, J, k )t) M    J1C (i,J,k j*) Jt 

n5-5nS+2n 
2 n »n 

+ 4 ZEE Cov(s. ,,s., ) + k E   E Cov(s.,s. .) + other sums 

containing no more than n  terns each (25) 

Here the firsrfc sum is over all sets of four subscripts no two of which 

are the same, etc. The coefficient 2 of the second sum arises from 

combining the two equivalent expressions  E E E Cov(a,,s.v) and 
\ * 0 v if —"$   / 
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Kg. 
fj8.)--••-, Hie other numerical coefficients arise similarly- 

The polynomials in n «ritten abtw* the summation signs indicate the 

number of terms liiYolTed in the BUBSsation» 

Now, the terms '-nder each Buanaatl-an sign in (25) are all the same 

no matter what the numerical values of the subscripts! consequently 

z - Var s'_ =• -"* 
n 

(n - 6rr -t lln - 6TJ,)COT(BL,,S.^) + 2(n - 3n • EnJCorCa^B.^) 

+ Mn3 - 5n£ + 2n)Cov(a1J,sJk) + 0(n
2) (26) 

where 0(n ) stands for terms of order n  . In (26) and in the follow- 

ing paragraph it is understood that h,i,j,k^ . 

Now, s. . uijd a.,  fluctuate independently over successive samples, 

/     «. 2 so that CoT(sh.jS,. ) •» 0 . The same is true of a. and a,.  . Con- 

aequently, 

Var s\ -4r ^ '  5a2 • «a)Cor(«1J,«Jk) + PT^-^M«^«^) + cZ-U. (2?) 

Equation 27 gives the desired result, but not in a very useful form, 

since Cov(a..,s,. ) is a function of population parameters end is gener- 
ös 

ally not known. As a final step, then, it will be shown that s (s. ) , 

the actual variance (over items 1 to n ) of the observed item-test 

covariances, provides a "consistent" estimate of COV(B.,,B . ) , i.e., 

It will be proved that 
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.a 
<Bn> Cov-(Si^8jk) + o(|) . (88) 

From the formula for the corarlanee of a earn» 

*i*-|fij ' (29) 

^"iz^^g^V8^ * (50) 

the term under the summation sign, being the actual corarlanee (over 

items 1 to n ) of the observed values of s. , and s^ t 

B<«vV - Wik-?(?«)(?ik) (31) 

Substituting from (31) into (30)/ and taking expected valuea, ve 

find 

"•^-^jyvn-^SS**''«* (») 

Grouping the sums on the right, we hare 

rn(n-l)(n-2) 1 rn(n-l)(n-2)(n-3) 
E« (B..J "^  E E Z  Es. ,B.. + 0(a*) - -4-   LESE   Is.,« ik 

• 0(n5) (33) 



Now, tbe tsnsw under each mmmtitm sign in (33) are the same re- 

gardless of' the numerical value of the subscript.    Furthermore > as already 

pointed out in deriving (27).    COV(B. .,8,.) = 0   when   h^i^j,^ , or in 

other worts,   *B5t4*fv * EehjtEsik K°    r <**   £!shisiv ~ Es, J»»ik    -    Con- 

sequently, 

HB2(Bi2)  - fc13.tt   . ^ jEBik + 0 (i)     • (54) 

But this is the same as (28) * which was to he proved. 

2 
The large sandle standard error of 8^ may therefore be estimated 

from the actual variance of the observed item-test covariancess 

S.E.2(s^) «V(si2) . (35) 

By meisns of the "delta" method (kf Vol. 1, gg, 208 ff.)? it is 

readily shown from (35) that in large sampleB 

S.E.2(s  ) - J^.E.£(s2) - —|L      . (36) 

z z 

If t/n is substituted for z in (3^)> the square of the third 

equation of Table 1 ie obtained. 

The corresponding squared standard error for sampling from finite 

populations may be shown to he 

"^•^\) ' <37) 
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The Kader-Richardson Reliability Cqeffleientj Formula 20 

Let the usual formula for V~Q t  the Kuder-Richar&son formula 20i 

be rewritten as fcHowsj 

-ja/i-»^ 
n-ll   n / r20 = "^ 1 * " ' ' Wl 

1    ? / P P 
where R = ^Ja

z 
m M/8Z > say 

2 
la the extraordinary case where a ~ 0 , we will agree not to try to 

2* 

compute any value of r^ . The "delta" method may now he used to 

obtain the result. 

Var R A -L Var M + ^ Var s^ - ^ Cov(M,e^) , (39) 
s        s        s„ z        z        z 

Now Var(s ) is already known from equation 55- Var(M) can be evalu- z 

ated by the usual formula for the standard error of a mean: 

VarM=is2(s2) , (1*0) 

2 2 where s (s.} is the actual variance of the observed item vari&ncee. 

Finally, it is readily shown, by methods similar to those used in eval- 
o. 

uating Var (s"") , that z 

Cov(M,s2 - |»("J»»U) , (*L) 
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'•Jhere    s(s.,,s.   )    is the actual oovarianee between the observed ite-n 

variJya<s-#s and the observed item-test covariancesi 

Consequently,' 

Var K 
ns z 

s2(s2) + ^R2
s
2(s.   )  - 4RS(S

2,S.   )~|      . 
X IS 1       XZ      I fl») 

Now Var(rpQ) = ~g Var(R)  ; hence, to order l/n   , 
n 

•E.2(r2Q) '--^[".«(.J) + Un
9(l - r20)

2s2{Blz) - «m(l - r^Ms2^)] . (43) 
n s <— —• ' 

It may be noted that the quantity (l - rp_) is of order l/n , because, 

by the Spearman-Brown formula, lim n-(i~ - ron) -  constant . It is then 
n=oo     d° 

see^from (^5) that S.E« (rori) is a auantity of order i/n  . Equation 

kj>  leads directly to the fourth formula of Table 1. 

It may be shown that the corresponding standard error when sampling 

from a finite population is (m - n)/m times the value given in (^3). 

The Kuder-Bichardson Reliability Coefficient, Formula 81 

By a procedure wholly parallel to that used for the formula-20 relia- 

bility coefficient, it is found that, approximately, 

S.E.2(r21) - 1 f(i „ S5)2s2(p) + Un2(l - r21)
2s2(3^ 

n s L, 

- l+n(l - r21)(l - 2ä)s(pi,slz) w 

where s(p ,s. ) 1B the actual covariance between the observed item 
X  12* 
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difficulties and the observed item-tent eovarlanees, 'Equation k\  leads 

directly to the fifth formula of Table 1, 

The standard error of the split-half reliability coefficient has 

not been worked out. It must, however, be larger than the standard 

error of r~Q , given by (h3)}  since r^. ig the mean of the split* 

half coefficients from all possible splits, as shown by Cronbach (2), 

The Validity Coefficient 

If c is an outside criterion, 

r = cz 
cz  s s 

C 2 

(V5) 

By the "delta" method, , 

Var r —r cz   cz 

r„ „  2 Var s    var s cz      z 

s cz z 

Cov(s ,s ) v cz' z 
—, r— 

8  S 
CZ Z 

<*6) 

It is found that 

Var Bcz ^s2(aci) ' 

Cov(s. ,a ) =;Vs(s 4,s, ) x iz7 z   a • ci iz 

(^7) 

C*8). 

FinaUy, 

r 
S.E- (r ) cz us 

1  2/   ,, 
"2 S <8ci> 

2r r cz  /      \   cz 2,   x. 
 SIS, ,S.  ) + —je- E (S.  ) s s  v ic' is'   2   v *-* z c s z 

'iz' • (»*) 
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Equation h$  leads directly to the last formula of Table 1. 

The corresponding standard error for sampling from a finite, p^ol 

of items is presumably (m - n)/m times the foregoing quantity, 
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